The S. cerevisiae VENUS-fusion Library consists of strains expressing two fragments (VN or VC) of the VENUS fluorescent protein attached to the C-terminus of each protein. The interaction of two proteins can be easily and quickly analyzed for all yeast proteins, and the interaction between proteins expressed in a natural state can be analyzed using its own promoter in the cell.
Features and Benefits
Analysis of protein interactions and intracellular localization in live cells
Simple observation possible only with a fluorescence microscope
Easy to study the function and interaction of unknown new proteins
Proteinylation analysis possible (ubiquitination, sumoylation, neddylation, etc.)
Overview
S. cerevisiae VENUS-fusion library was developed at Seoul National University (VN-fusion Library: Genome Res. 2013. 23:736-746 & VC-fusion Library: Genome Res. 2019. 29:135-145). Bioneer owns their exclusive business license. The VENUS-fusion library consists of S. cerevisiae strains expressing an ORF containing each fragment of VENUS (VN & VC) at the C-terminus. The VN/VC fusion protein was inserted into the yeast chromosome via homologous recombination and expressed using its own promoter. The VN library consists of 5,809 strains and the VC library consists of 5552 strains, covering more than 90% of the S. cerevisiae proteome. .
Principle
Bimolecular Fluorescence Complementation (BiFC) Assay
In the bimolecular fluorescence complementation technique (BiFC), a fluorescent protein (VENUS) is divided into N-terminal (VN) and C-terminal (VC) fragments and then attached to each of the two proteins to be interacted with and expressed.