Based on over 50 years of experience in thermogravimetry, NETZSCH has developed the thermobalance TG 209 F1 Libra®. This instrument allows for analyses to be carried out even faster, more accurately, and across an extended temperature range.
Twice as fast by means of BeFlat®
In contrast with other thermobalances, no time-consuming baseline determinations need normally to be carried out with the TG 209 F1 Libra® prior to a measurement. The unique BeFlat® function of the Libra® automatically compensates for any external factors influencing the measurement. This cuts work hours by up to 50%, leaving more time available, for example, for further measurements.
20 times faster due to high heating rates
The heart of the TG 209 F1 Libra® is the micro furnace made of high-performance ceramics. It not only allows for a wider sample temperature range of up to 1100°C, but also for heating rates of up to 200 K/min. The user can thus receive the results of the analysis – even at highest temperature – within a few minutes, i.e. 20 times faster than for other thermobalances.
More comprehensive and faster characterization by patented c-DTA®
With the TG 209 F1 Libra®, the sample temperature is measured directly. Endo- and
Exothermic
A sample transition or a reaction is exothermic if heat is generated.
exothermal reactions can now be detected and show, for example, the
Melting Temperatures and Enthalpies
The enthalpy of fusion of a substance, also known as latent heat, is a measure of the energy input, typically heat, which is necessary to convert a substance from solid to liquid state.